
Analyzing improvement methods in GPU
virtualization towards the future

Christina Tang

Electrical & Computer Engineering, University of Washington

1 Introduction
The rise of machine learning, graphic-intensive software, and high-performance computing
systems indicate an increased need for GPU usage. However, acquisition costs, overhead, and
availability are constraints for companies to access more GPU processing power. GPU demand
makes them costlier, computing facilities need space, and GPUs have high power consumption
even when they are not in use. Previously, virtualization did not include GPUs, but CPU-based
virtualization does not meet the increasing demand for computational power.

This has introduced cloud computing systems for remote GPU acceleration and the offering
GPGPU services. Virtual GPU acceleration is now performing just as well as physical GPUs.
New proposals and technologies in GPU virtualization methods aims to further improve this
through improving resource utilization and efficiency to decrease power consumption, increase
scalability, and provide further flexibility for consumers.

In addition, the growing field of Internet of Things, or IoT, benefits from remote GPGPU
services. IoT devices are all connected to the cloud, so GPGPU services impact device
management and data processing. With more IoT devices coming into existence, the
ever-increasing demand for cloud computing power becomes very apparent.

This paper discusses approaches to this problem by discussing and comparing techniques in
virtualization and containerization, and what could be the direction of these methods in the
future.

2 Virtualization Methods
Remote GPU virtualization for GPGPU aims to solve increasing acquisition costs, space, and
energy with GPU sharing in clusters. This method can effectively utilize all GPUs and scale to
support more users. Cluster throughput, or jobs completed per time unit, has been shown to
double with this technique. In addition, total energy consumption was reduced up to 40%.

There has also been a recent shift towards containerization. This method reduces virtual runtime,
size, flexibility. It also integrates tasks like application packaging and service orchestration.

2.1 NVIDIA vGPU
NVIDIA’s virtual GPU, or vGPU, software remotely accelerates desktop applications by
splitting a physical GPU on a server into multiple virtual GPUs. This allows a GPU to be shared
across many users. Splitting a GPU amongst users allows providers to allocate resources
efficiently. It also provides flexibility to provide how much computation a user will need. In the
past, virtual GPUs had a one-to-one relationship with the user; vGPU allows a one-to-many
relationship between a GPU and its users.

Its software provides users with the experience of a physical GPU through each virtual machine.
Workplace software from video conferencing to computer-aided design benefit from virtual
GPUs without needing to purchase and distribute physical GPUs to individual employees. Many
companies and institutions from industries in finance, satellite imagery, automotive, legal,
education, and more, have utilized NVIDIA’s virtual GPU technology to achieve higher
performance, lower latency, and greater productivity.

2.2 rCUDA
rCUDA, or remote CUDA, is a framework enables GPU acceleration remotely on
CUDA-enabled GPUs. CUDA is a programming model and parallel computing platform that
helps developers use a GPU with better performance. In high performance computing clusters,
each node typically has its own GPU, but having a GPU in each node in a cluster significantly
increases power consumption. One extra node can consume 50% more energy, and a high-end
GPU will consume even more. This is the motivation for decreasing the number of GPUs in
clusters for significant energy savings. rCUDA reduces the number of accelerators in the cluster,
which improves energy consumption, acquisition costs, maintenance, and physical space.

rCUDA applies itself as middleware to manage remote GPU accelerators. The client and server
middleware of rCUDA replace functions from the CUDA library to reduce the number of
accelerators in a cluster. It intercepts calls by making wrapper libraries around the CUDA
runtime API on the client side, and having server-side middleware configured as a daemon that
runs on the nodes with GPGPU acceleration services.

rCUDA decreases execution time even with negligible performance reduction.
In vCUDA, when the OS driver for the GPU is not being used, the initialization time takes
longer.

vCUDA and rCUDA may be weak methods, because virtualization inherently degrades
performance. In addition, they are all still subsets of the CUDA API, and the complete CUDA
API documentation is not publicly available. This is a problem for proposals outside NVIDIA
itself, because the CUDA compiler inserts hidden, undocumented functions and makes calls to
them. rCUDA required rewriting functions to avoid the hidden calls. Every new version of
CUDA requires all virtualization frameworks to reconfigure.

2.3 NVIDIA Docker
The downside to VMs is that there is an entire operating system for each virtual GPU. While the
hypervisor-based virtual machines can run multiple applications, containerization virtualizes one
application for each container. This means that containers are simpler to manage because
applications do not make calls to host operating system kernels.

Docker itself is used for encapsulating application dependencies for deployment. Docker
containers are reproducible and reliable, but also fast because containers initialize much faster
without virtual machine overhead. It does not natively support NVIDIA GPUs, so NVIDIA
Docker was created to do so. NVIDIA Docker provides GPU acceleration for applications, while
simultaneously improving development, testing, and production workflow.

Microservices also benefit from NVIDIA Docker by integrating it with a serverless computing
framework to high-performance microservices. CPU-based serverless computing frameworks
already exist, so a GPU-supported framework can help developers deploy high-performance
microservices with a negligible decrease in performance.

However, there are minor drawbacks to NVIDIA Docker. According to the NVIDIA Docker
repository, it also does not support platforms macOS, windows, or ARM64 driver stacks. CUDA
multi process service or GPU-accelerated X servers are also not yet supported. For developers
already using the virtual machines, transitioning or migrating to containers may require extra
time and effort because of the lack of complete functionality on these specific contraints.

2.4 ConVGPU
NVIDIA Docker containerization is not the best solution either, because is susceptible to
deadlock. NVIDIA Docker has resource sharing and concurrent access, so multiple containers
can access the same GPU memory and cause deadlock.

ConVGPU exists to solve this problem by building on top of NVIDIA Docker to manage GPU
memory between containers. It isolates GPU memory, so each container does not use all the
memory of an entire GPU. This container-based proposal with NVIDIA Docker proves it does
not significantly decrease performance.

Another significant benefit is that ConVGPU is fully compatible with the CUDA API. This has a
large benefit against middleware proposals like rCUDA, where its drawback was the lack of
transparency with CUDA API.

3 Comparison
Containerization works well because of decreased hardware costs, reliability, scalability, and
spatial isolation. Dockers were made for continuous integration and portability, which
significantly improves deployment workflow. They are faster because containers can start up in a

few seconds, while a virtual machine can take minutes. Above all, containers have shown that
they have a significant performance advantage.
Transitioning from virtualization to containerization reduces overhead costs and increases the
performance for all common applications. However, specific uses like data clustering based on
the k-means method is faster in a virtual machine. Not every application is benefitted using
containers, so companies need to consider tradeoffs. Hybrid virtualization also creates other
tradeoffs, like security in exchange for performance and real-time applications.

Overall, it may be worth the time and effort for most developers to switch to a container-based
method if they can, and if their functional needs are supported. It may also be easier for
developers to choose just one method across the board. However, it also depends on the ways
containers are configured.

4. Considerations
Many of the proposed technologies and methods so far have boasted large improvements in
energy and efficiency to virtualized GPUs without much degradation in time or performance.
Looking towards the future, both containerization and VM-based GPUs methods need to
consider other factors like security, new GPU generations, and how to price services from the
increased flexibility.

4.1 Security
GPU virtualization is prone to confidentiality issues. The driver, operating system, hypervisor,
and physical GPU have no memory cleanup for security. A bad actor can start a virtual machine
right after the victim uses a virtual machine on the same GPU. Since there is no proper memory
cleaning, the isolation of virtualization is bypassed and data leakage can happen. The
recommendation is for developers to handle GPU memory just like main memory, and memory
security can be implemented on several layers.

Although Docker is very popular as a complete packaging and software delivery tool, it has
vulnerabilities. Insecure configuration and weak access control are the critical areas, but the
issues can also be mitigated on several layers by limiting Docker to remove host dependence
through abstraction. Cloud administrators and software architects suggest running containers on
top of a virtual machine. However, NVIDIA Docker security issues have not been thoroughly
studied, and could have a different implementation.

Overall, security is something that all developers need to keep in mind. Increasing code in
production only creates a larger surface for malicious attacks.

4.2 New generations of GPUs
On a study of remote GPU virtualization performance over three generations of GPUs, the
results show that the underlying GPU hardware has a big impact on performance. For each

generation, the virtualization middleware needs to change its design. This is another argument
for containerization against virtualization. The study concludes that every new generation
requires another adaptation.

4.3 Pricing
With the ability of giving more users remote GPU computing power, service providers are
shifting focus towards GPU-accelerated services. There are now different ways to provide
remote GPU services and greater flexibility for clusters in high-performance computing and
different needs in microservices, IoT, and machine learning. Researchers suggest implementing a
pricing strategy as a two-stage leader-follower (Stackelberg) game to analyze the equilibrium.
The analysis will result in a better payoff for both the cloud provider and its users. However, this
is just one study, and better pricing strategies may come about when analyzing GPU-accelerated
cloud computing in the real world.

Given that many industries are turning towards using remote GPU virtualization, the economy is
changing, and providers need to consider how to elastically price their services to stay
competitive. The goal is to beat the acquisition cost of a company buying GPUs for their own
use.

4 Conclusion
Currently, there is no one-size-fits all method for how virtual GPU acceleration services should
be done. Concurrent research and development in this area is a race to find methods and
solutions for secure, flexible, and energy efficient remote GPU virtualization.

Container architectures can be redesigned by reducing creation time for faster and safer function
creation and deployment. More research needs to be done on charging policies for the cloud
providers that provide the environments of virtual GPUs to users. ConVGPU can be improved by
adopting a clustering system like Docker Swarm and its researchers claim extending it in a
multiple GPU will achieve greater performance with an appropriate algorithm.

 Although containerization is generally better, virtualization is much better in specific use cases.
In addition, hybrid virtualization improves other use cases even more. The best methods are
dependent on the providers, users, and the specific services. Further into the future, the methods
will be ever-evolving with new security vulnerabilities and new hardware.

Improvements in distributed computing infrastructures are a must because of its broad impact.
Every industry, even outside of technology, is demanding more computation power. With more
use cases than ever, services may be able to effectively customize its GPU virtualization specific
to each application.

References

[1] Silla, F., Prades, J., Iserte, S. and Reano, C. (2016). Remote GPU Virtualization: Is It

Useful?. ​2016 2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB)​.

[2] Duato, J., Pena, A., Silla, F., Mayo, R. and Quintana-Orti, E. (2010). rCUDA: Reducing the

number of GPU-based accelerators in high performance clusters. ​2010 International
Conference on High Performance Computing & Simulation

[3] Kang, D., Jun, T., Kim, D., Kim, J. and Kim, D. (2017). ConVGPU: GPU Management

Middleware in Container Based Virtualized Environment. ​2017 IEEE International
Conference on Cluster Computing (CLUSTER)​.

[4] Kim, J., Jun, T., Kang, D., Kim, D. and Kim, D. (2018). GPU Enabled Serverless Computing

Framework. ​2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP)​.

[5] Radchenko, G., Alaasam, A. and Tchernykh, A. (2019). Comparative Analysis of

Virtualization Methods in Big Data Processing. ​Supercomputing Frontiers and Innovations​,
6(1).

[6] Maurice, C., Neumann, C., Heen, O. and Francillon, A. (2014). Confidentiality Issues on a

GPU in a Virtualized Environment. ​Financial Cryptography and Data Security​, pp.119-135.

[7] ​Combe, T., Martin, A. and Di Pietro, R. (2016). To Docker or Not to Docker: A Security

Perspective. ​IEEE Cloud Computing​, 3(5), pp.54-62.

[8] Reano, C. and Silla, F. (2017). A Comparative Performance Analysis of Remote GPU

Virtualization over Three Generations of GPUs. ​2017 46th International Conference on
Parallel Processing Workshops (ICPPW)​.

[9] Li, H., Ota, K., Dong, M., Vasilakos, A. and Nagano, K. (2017). Multimedia Processing

Pricing Strategy in GPU-accelerated Cloud Computing. ​IEEE Transactions on Cloud
Computing​, pp.1-1.

